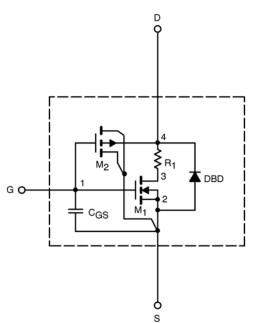


Vishay Siliconix

N-Channel Reduced Q_g, Fast Switching WFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

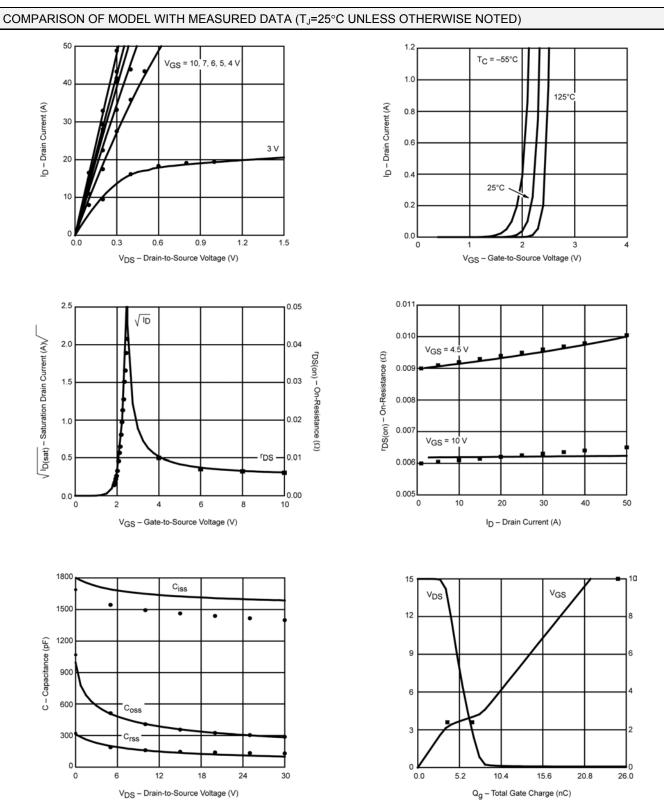
DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.



Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			*		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1.9		V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \geq 5$ V, V_{GS} = 10 V	686		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 12.5A	0.006	0.006	Ω
		V_{GS} = 4.5 V, I _D = 10A	0.009	0.009	
Forward Transconductance ^a	g _{fs}	V _{DS} = 15 V, I _D = 12.5A	45	46	S
Diode Forward Voltage ^a	V _{SD}	I _S = 2.7A	0.73	0.73	V
Dynamic ^b			•		
Input Capacitance	C _{iss}	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	1626	1465	pF
Output Capacitance	C _{oss}		360	360	
Reverse Transfer Capacitance	C _{rss}		136	150	
Total Gate Charge	Qg	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 12.5A	22	25	nC
		V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 12.5A	11	12	
Gate-Source Charge	Q _{gs}		3.7	3.7	
Gate-Drain Charge	Q _{gd}		3.1	3.1	

Notes a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si7392ADP Vishay Siliconix

Note: Dots and squares represent measured data.